15 research outputs found

    Adaptive Speech Compression Based on Discrete Wave Atoms Transform

    Get PDF
    This paper proposes a new adaptive speech compression system based on discrete wave atoms transform. First, the signal is decomposed on wave atoms, then wave atom coefficients are truncated using a new adaptive thresholding which depends on the SNR estimation. The thresholded coefficients are quantized using Max Lloyd scalar quantizer. Besides, they are encoded using zero run length encoding followed by Huffman coding. Numerous simulations are performed to prove the robustness of our approach. The results of current work are compared with wavelet based compression by using objective criteria, namely CR, SNR, PSNR and NRMSE. This study shows that the wave atoms transform is more appropriate than wavelets transform since it offers a higher compression ratio and a better speech quality

    Prioritizing Power demand response for Hydrogen PEMFC-Electric Vehicles using Hybrid Energy Storage

    Get PDF
    PEMFC powered Hybrid vehicle system is one of an interesting issue for the industry due to its high performances. The PEMFC cannot certainly ensure a sustained required energy in some scenarios. To solve this problem related to PEMFC transient response, a Hybrid Electrical Storage System (HES) is a potential candidate for a solution. The proposed Hybrid Storage system is comprised of the battery (BT) and a Super-Capacitor (SC) components. These components are included to control the hydrogen variations and the fast peak powers scenarios respectively. The SC is used to control PEMFC and the BT slow dynamics at the same times. An accurate Multi-Ways Energy Management System (MW-EMS) is proposed which aims to cooperate with the system components through SC/BT state of charge and a flux calculation. The simulation results are discussed and assessed using  MATLAB/ Simulink

    A Smart Management Approach Investigation for Hybrid Autonomous Power System

    Get PDF
    A novel design of system management based on multi-agents approach applied to an autonomous hybrid power system is proposed and investigated. The system under study integrates few elements, some serve to provide power requirements, while the others used to store energy. Among these items, we can mention a Solar Power Source namely (SPS) which works as primary source to feed a DC electric load. The system integrates also a secondary power source namely Power Recovery Source (PRS) based on a fuel cell technology used to compensate the power deficit if required. More than two kinds of energy storage, the first called Hydrogen Generation Element (HGE) including a water electrolyzer to store the energy in hydrogen form, while the second uses an Ultracapacitor Element (UE) to store the energy in its electrical form. To reach the well functioning of the system in order to satisfy the load requirements whatever the facts, an intelligent energy management approach based on multi-agent modeling is implemented and verified. Hence, the reliability and the effectiveness of the applied management strategy, which allows the coordination between the different energy sources and protects the system against any fluctuation, are proved by the obtained results from Matlab/Simulink

    Enhanced Intelligent Energy Management System for a Renewable Energy-based AC Microgrid

    Get PDF
    This paper proposes an enhanced energy management system (EEMS) for a residential AC microgrid. The renewable energy-based AC microgrid with hybrid energy storage is broken down into three distinct parts: a photovoltaic (PV) array as a green energy source, a battery (BT) and a supercapacitor (SC) as a hybrid energy storage system (HESS), and apartments and electric vehicles, given that the system is for residential areas. The developed EEMS ensures the optimal use of the PV arrays’ production, aiming to decrease electricity bills while reducing fast power changes in the battery, which increases the reliability of the system, since the battery undergoes fewer charging/discharging cycles. The proposed EEMS is a hybrid control strategy, which is composed of two stages: a state machine (SM) control to ensure the optimal operation of the battery, and an operating mode (OM) for the best operation of the SC. The obtained results show that the EEMS successfully involves SC during fast load and PV generation changes by decreasing the number of BT charging/discharging cycles, which significantly increases the system’s life span. Moreover, power loss is decreased during passing clouds phases by decreasing the power error between the extracted power by the sources and the required equivalent; the improvement in efficiency reaches 9.5%

    A Multi-Agent System for Smart Energy Management Devoted to Vehicle Applications: Realistic Dynamic Hybrid Electric System Using Hydrogen as a Fuel

    No full text
    Real-time simulation test beds for new zero-emission hybrid electric vehicles are considered as an attractive challenge for future transport applications that are fully recommended in the laboratory environment. In contrast, new zero-emission hybrid electric vehicles have a more complicated charging procedure. For this reason, an efficient simulation tools development for hydrogen consumption control becomes critical. In this vein, a New Zero Emission Hybrid Electric Vehicle Simulation (NZE-HEVSim) tool for the dynamic Fuel Cell Hybrid-Electric System is proposed to smartly control multisource activities. The designed system consists of a proton-exchange membrane fuel cell used to provide the required energy demand and a Supercapacitor system for energy recovery assistance in load peak or in fast transient. To regulate the supplied power, an efficient Real-Time Embedded Intelligent Energy Management (RT-EM-IEM) is implemented and tested through various constraints. The proposed intelligent energy management system aims to act quickly against sudden circumstances related to hydrogen depletion in the basis required fuel consumption prediction using multi-agent system (MAS). The proposed MAS strategy aims to define the proper operating agent according to energy demand and supply. The obtained results prove that the designed system meets the objectives set for RT-EM-IEM by referring to an experimental velocity database
    corecore